Deep Sea - Biology

Biology

Regions below the epipelagic are divided into further zones, beginning with the mesopelagic which spans from 200 to 1000 meters below sea level, where a little light penetrates while still being insufficient for primary production. Below this zone the deep sea proper begins, consisting of the aphotic bathypelagic, abyssopelagic and hadopelagic. Food consists of falling organic matter known as 'marine snow' and carcasses derived from the productive zone above, and is scarce both in terms of spatial and temporal distribution.

Instead of relying on gas for their buoyancy, many species have jelly-like flesh consisting mostly of glycosaminoglycans, which has very low density. It is also common among deep water squid to combine the gelatinous tissue with a flotation chamber filled with a coelomic fluid made up of the metabolic waste product ammonium chloride, which is lighter than the surrounding water.

The midwater fish have special adaptations to cope with these conditions—they are small, usually being under 25 centimetres (10 in); they have slow metabolisms and unspecialized diets, preferring to sit and wait for food rather than waste energy searching for it. They have elongated bodies with weak, watery muscles and skeletal structures. They often have extendable, hinged jaws with recurved teeth. Because of the sparse distribution and lack of light, finding a partner with which to breed is difficult, and many organisms are hermaphroditic.

Because light is so scarce, fish often have larger than normal, tubular eyes with only rod cells. Their upward field of vision allows them to seek out the silhouette of possible prey. Prey fish however also have adaptations to cope with predation. These adaptations are mainly concerned with reduction of silhouette, a form of camouflage. The two main methods by which this is achieved are reduction in the area of their shadow by lateral compression of the body, and counter illumination via bioluminescence. This is achieved by production of light from ventral photophores, which tend to produce such light intensity to render the underside of the fish of similar appearance to the background light. For more sensitive vision in low light, some fish have a retroreflector behind the retina. Flashlight fish have this plus photophores, which combination they use to detect eyeshine in other fish (see Tapetum lucidum).

Organisms in the deep sea are almost entirely reliant upon sinking living and dead organic matter which falls at approximately 100 meters per day. In addition, only about 1-3% of the production from the surface reaches the sea bed mostly in the form of marine snow. Larger food falls, such as whale carcasses, also occur and studies have shown that these may happen more often than currently believed. There are many scavengers that feed primarily or entirely upon large food falls and the distance between whale carcasses is estimated to only be 8 kilometers. In addition, there are a number of filter feeders that feed upon organic particles using tentacles, such as Freyella elegans.

Marine bacteriophages play an important role in cycling nutrients in deep sea sediments. They are extremely abundant (between 5x1012 and 1x1013 phages per square meter) in sediments around the world.

Read more about this topic:  Deep Sea

Famous quotes containing the word biology:

    The “control of nature” is a phrase conceived in arrogance, born of the Neanderthal age of biology and the convenience of man.
    Rachel Carson (1907–1964)

    Nothing can be more incorrect than the assumption one sometimes meets with, that physics has one method, chemistry another, and biology a third.
    Thomas Henry Huxley (1825–95)