DDT - Environmental Impact

Environmental Impact

DDT is a persistent organic pollutant that is readily adsorbed to soils and sediments, which can act both as sinks and as long-term sources of exposure contributing to terrestrial organisms. Depending on conditions, its soil half life can range from 22 days to 30 years. Routes of loss and degradation include runoff, volatilization, photolysis and aerobic and anaerobic biodegradation. Due to hydrophobic properties, in aquatic ecosystems DDT and its metabolites are absorbed by aquatic organisms and adsorbed on suspended particles, leaving little DDT dissolved in the water itself. Its breakdown products and metabolites, DDE and DDD, are also highly persistent and have similar chemical and physical properties. DDT and its breakdown products are transported from warmer regions of the world to the Arctic by the phenomenon of global distillation, where they then accumulate in the region's food web.

Because of its lipophilic properties, DDT has a high potential to bioaccumulate, especially in predatory birds. DDT, DDE, and DDD magnify through the food chain, with apex predators such as raptor birds concentrating more chemicals than other animals in the same environment. They are very lipophilic and are stored mainly in body fat. DDT and DDE are very resistant to metabolism; in humans, their half-lives are 6 and up to 10 years, respectively. In the United States, these chemicals were detected in almost all human blood samples tested by the Centers for Disease Control in 2005, though their levels have sharply declined since most uses were banned in the US. Estimated dietary intake has also declined, although FDA food tests commonly detect it.

Marine macroalgae (seaweed) help reduce soil toxicity by up to 80% within six weeks.

Read more about this topic:  DDT

Famous quotes containing the word impact:

    As in political revolutions, so in paradigm choice—there is no standard higher than the assent of the relevant community. To discover how scientific revolutions are effected, we shall therefore have to examine not only the impact of nature and of logic, but also the techniques of persuasive argumentation effective within the quite special groups that constitute the community of scientists.
    Thomas S. Kuhn (b. 1922)