Data Transformation (statistics) - Transforming To A Uniform Distribution

Transforming To A Uniform Distribution

If we observe a set of n values X1, ..., Xn with no ties (i.e. there are n distinct values), we can replace Xi with the transformed value Yi = k, where k is defined such that Xi is the kth largest among all the X values. This is called the rank transform, and creates data with a perfect fit to a uniform distribution. This approach has a population analogue. If X is any random variable, and F is the cumulative distribution function of X, then as long as F is invertible, the random variable U = F(X) follows a uniform distribution on the unit interval .

From a uniform distribution, we can transform to any distribution with an invertible cumulative distribution function. If G is an invertible cumulative distribution function, and U is a uniformly distributed random variable, then the random variable G−1(U) has G as its cumulative distribution function.

Read more about this topic:  Data Transformation (statistics)

Famous quotes containing the words transforming, uniform and/or distribution:

    America is the civilization of people engaged in transforming themselves. In the past, the stars of the performance were the pioneer and the immigrant. Today, it is youth and the Black.
    Harold Rosenberg (1906–1978)

    The Federal Constitution has stood the test of more than a hundred years in supplying the powers that have been needed to make the Central Government as strong as it ought to be, and with this movement toward uniform legislation and agreements between the States I do not see why the Constitution may not serve our people always.
    William Howard Taft (1857–1930)

    There is the illusion of time, which is very deep; who has disposed of it? Mor come to the conviction that what seems the succession of thought is only the distribution of wholes into causal series.
    Ralph Waldo Emerson (1803–1882)