Proof of The Focus-directrix Property
The directrix of a conic section can be found using Dandelin's construction. Each Dandelin sphere intersects the cone at a circle; let both of these circles define their own planes. The intersections of these two parallel planes with the conic section's plane will be two parallel lines; these lines are the directrices of the conic section. However, a parabola has only one Dandelin sphere, and thus has only one directrix.
Using the Dandelin spheres, it can be proved that any conic section is the locus of points for which the distance from a point (focus) is proportional to the distance from the directrix. Ancient Greek mathematicians such as Pappus of Alexandria were aware of this property, but the Dandelin spheres facilitate the proof.
Neither Dandelin nor Quetelet used the Dandelin spheres to prove the focus-directrix property. The first to do so was apparently Pierce Morton in 1829. The focus-directrix property is essential to proving that astronomical objects move along conic sections around the Sun.
Read more about this topic: Dandelin Spheres
Famous quotes containing the words proof of the, proof of, proof and/or property:
“The fact that several men were able to become infatuated with that latrine is truly the proof of the decline of the men of this century.”
—Charles Baudelaire (18211867)
“There are some persons in this world, who, unable to give better proof of being wise, take a strange delight in showing what they think they have sagaciously read in mankind by uncharitable suspicions of them.”
—Herman Melville (18191891)
“There is no better proof of a mans being truly good than his desiring to be constantly under the observation of good men.”
—François, Duc De La Rochefoucauld (16131680)
“Lets call something a rigid designator if in every possible world it designates the same object, a non-rigid or accidental designator if that is not the case. Of course we dont require that the objects exist in all possible worlds.... When we think of a property as essential to an object we usually mean that it is true of that object in any case where it would have existed. A rigid designator of a necessary existent can be called strongly rigid.”
—Saul Kripke (b. 1940)