Cytotoxic T Cell - Development

Development

The immune system must recognize millions of potential antigens. There are fewer than 30,000 genes in the human body, so it's impossible to have one gene for every antigen. Instead, the DNA in millions of white blood cells in the bone marrow is shuffled to create cells with unique receptors, each of which can bind to a different antigen. Some receptors bind to tissues in the human body itself, so to prevent the body from attacking itself, those self-reactive white blood cells are destroyed during further development in the thymus.

TCRs have two parts, usually an alpha and a beta chain. (Some TCRs have a gamma and a delta chain.) Hematopoietic stem cells in the bone marrow migrate into the thymus, where they undergo VDJ recombination of their beta-chain TCR DNA to form a developmental form of the TCR protein, known as pre-TCR. If that rearrangement is successful, the cells then rearrange their alpha-chain TCR DNA to create a functional alpha-beta TCR complex. This highly-variable genetic rearrangement product in the TCR genes helps create millions of different T cells with different TCRs, helping the body's immune system respond to virtually any protein of an invader. The vast majority of T cells express alpha-beta TCRs (αβ T cells), but some T cells in epithelial tissues (like the gut) express gamma-delta TCRs (γδ T cells), which recognize non-protein antigens.

T cells with functionally stable TCRs express both the CD4 and CD8 co-receptors and are therefore termed "double-positive" (DP) T cells (CD4+CD8+). The double-positive T cells are exposed to a wide variety of self-antigens in the thymus and undergo two selection criteria:

  1. positive selection, in which those double-positive T cells that bind too weakly to MHC-presented self antigens undergo apoptosis because of their inability to recognize MHC-protein complexes.
  2. negative selection, in which those double-positive T cells that bind too strongly to MHC-presented self antigens undergo apoptosis because they could otherwise become autoreactive, leading to autoimmunity.

Only those T cells that bind to the MHC-self-antigen complexes weakly are positively selected. Those cells that survive positive and negative selection differentiate into single-positive T cells (either CD4+ or CD8+), depending on whether their TCR recognizes an MHC class I-presented antigen (CD8) or an MHC class II-presented antigen (CD4). It is the CD8+ T-cells that will mature and go on to become cytotoxic T cells following their activation with a class I-restricted antigen.

Read more about this topic:  Cytotoxic T Cell

Famous quotes containing the word development:

    I can see ... only one safe rule for the historian: that he should recognize in the development of human destinies the play of the contingent and the unforeseen.
    —H.A.L. (Herbert Albert Laurens)

    Such condition of suspended judgment indeed, in its more genial development and under felicitous culture, is but the expectation, the receptivity, of the faithful scholar, determined not to foreclose what is still a question—the “philosophic temper,” in short, for which a survival of query will be still the salt of truth, even in the most absolutely ascertained knowledge.
    Walter Pater (1839–1894)

    And then ... he flung open the door of my compartment, and ushered in “Ma young and lovely lady!” I muttered to myself with some bitterness. “And this is, of course, the opening scene of Vol. I. She is the Heroine. And I am one of those subordinate characters that only turn up when needed for the development of her destiny, and whose final appearance is outside the church, waiting to greet the Happy Pair!”
    Lewis Carroll [Charles Lutwidge Dodgson] (1832–1898)