Cyclic Group - Subgroups and Notation

Subgroups and Notation

All subgroups and quotient groups of cyclic groups are cyclic. Specifically, all subgroups of Z are of the form mZ, with m an integer ≥0. All of these subgroups are different, and apart from the trivial group (for m=0) all are isomorphic to Z. The lattice of subgroups of Z is isomorphic to the dual of the lattice of natural numbers ordered by divisibility. All factor groups of Z are finite, except for the trivial exception Z/{0} = Z/0Z. For every positive divisor d of n, the quotient group Z/nZ has precisely one subgroup of order d, the one generated by the residue class of n/d. There are no other subgroups. The lattice of subgroups is thus isomorphic to the set of divisors of n, ordered by divisibility. In particular, a cyclic group is simple if and only if its order (the number of its elements) is prime.

Using the quotient group formalism, Z/nZ is a standard notation for the additive cyclic group with n elements. In ring terminology, the subgroup nZ is also the ideal (n), so the quotient can also be written Z/(n) or Z/n without abuse of notation. These alternatives do not conflict with the notation for the p-adic integers. The last form is very common in informal calculations; it has the additional advantage that it reads the same way that the group or ring is often described verbally in English, "Zee mod en".

Read more about this topic:  Cyclic Group