Cyanamide - Production, Reactions, Uses

Production, Reactions, Uses

Cyanamide is produced by hydrolysis of calcium cyanamide, which in turn is prepared from calcium carbide via the Frank-Caro process.

CaCN2 + H2O + CO2 → CaCO3 + H2NCN

The conversion is conducted on slurries, consequently most commercial cyanamide is sold as an aqueous solution.

The main reaction exhibited by cyanamide involves additions of compounds containing an acidic proton. Water, hydrogen sulfide, and hydrogen selenide react with cyanamide to give urea, thiourea, and selenourea, respectively:

H2NCN + H2E → H2NC(E)NH2 (E = O, S, Se)

In this way, cyanamide behaves as a dehydration agent and thus can induce condensation reactions. Alcohols, thiols, and amines react analogously to give alkylisoureas, "pseudothioureas," and guanidines. The anti-ulcer drug cimetidine is generated using such reactivity. Related reactions exploit the bifunctionality of cyanamide to give heterocycles, and this latter reactivity is the basis of several pharmaceutical syntheses such as the aminopyrimidine imatinib) and agrichemicals Amitrol (3-Amino-1,2,4-triazole) and Hexazinone. The hair-loss treatment Minoxidil and the anthelmintic (worm-killing) drugs Albendazole, Flubendazole, and Mebendazole feature 2-aminoimidazole substructures derived from cyanamide.

Cyanamide is a common agricultural rest-breaking agent applied in spring to stimulate uniform opening of buds, early foliation and bloom. Cyanamide can effectively compensate for the moderate lack of chilling units accumulated in the previous autumn and save the harvest that would otherwise be lost. It is particularly effective for woody plants such as berries, grapes, apples, peaches and kiwis. Overdosage, high concentration and error in timing of application can damage the buds (especially of peach trees).

Read more about this topic:  Cyanamide