Cryosphere - Structure

Structure

Frozen water is found on the Earth’s surface primarily as snow cover, freshwater ice in lakes and rivers, sea ice, glaciers, ice sheets, and frozen ground and permafrost (permanently-frozen ground). The residence time of water in each of these cryospheric sub-systems varies widely. Snow cover and freshwater ice are essentially seasonal, and most sea ice, except for ice in the central Arctic, lasts only a few years if it is not seasonal. A given water particle in glaciers, ice sheets, or ground ice, however, may remain frozen for 10-100,000 years or longer, and deep ice in parts of East Antarctica may have an age approaching 1 million years.

Most of the world’s ice volume is in Antarctica, principally in the East Antarctic Ice Sheet. In terms of areal extent, however, Northern Hemisphere winter snow and ice extent comprise the largest area, amounting to an average 23% of hemispheric surface area in January. The large areal extent and the important climatic roles of snow and ice, related to their unique physical properties, indicate that the ability to observe and model snow and ice-cover extent, thickness, and physical properties (radiative and thermal properties) is of particular significance for climate research.

There are several fundamental physical properties of snow and ice that modulate energy exchanges between the surface and the atmosphere. The most important properties are the surface reflectance (albedo), the ability to transfer heat (thermal diffusivity), and the ability to change state (latent heat). These physical properties, together with surface roughness, emissivity, and dielectric characteristics, have important implications for observing snow and ice from space. For example, surface roughness is often the dominant factor determining the strength of radar backscatter . Physical properties such as crystal structure, density, length, and liquid-water content are important factors affecting the transfers of heat and water and the scattering of microwave energy.

The surface reflectance of incoming solar radiation is important for the surface energy balance (SEB). It is the ratio of reflected to incident solar radiation, commonly referred to as albedo. Climatologists are primarily interested in albedo integrated over the shortwave portion of the electromagnetic spectrum (~300 to 3500 nm), which coincides with the main solar energy input. Typically, albedo values for non-melting snow-covered surfaces are high (~80-90%) except in the case of forests. The higher albedos for snow and ice cause rapid shifts in surface reflectivity in autumn and spring in high latitudes, but the overall climatic significance of this increase is spatially and temporally modulated by cloud cover. (Planetary albedo is determined principally by cloud cover, and by the small amount of total solar radiation received in high latitudes during winter months.) Summer and autumn are times of high-average cloudiness over the Arctic Ocean so the albedo feedback associated with the large seasonal changes in sea-ice extent is greatly reduced. Groisman et al. (1994a) observed that snow cover exhibited the greatest influence on the Earth radiative balance in the spring (April to May) period when incoming solar radiation was greatest over snow-covered areas.

The thermal properties of cryospheric elements also have important climatic consequences. Snow and ice have much lower thermal diffusivities than air. Thermal diffusivity is a measure of the speed at which temperature waves can penetrate a substance. Snow and ice are many orders of magnitude less efficient at diffusing heat than air. Snow cover insulates the ground surface, and sea ice insulates the underlying ocean, decoupling the surface-atmosphere interface with respect to both heat and moisture fluxes. The flux of moisture from a water surface is eliminated by even a thin skin of ice, whereas the flux of heat through thin ice continues to be substantial until it attains a thickness in excess of 30 to 40 cm. However, even a small amount of snow on top of the ice will dramatically reduce the heat flux and slow down the rate of ice growth. The insulating effect of snow also has major implications for the hydrological cycle. In non-permafrost regions, the insulating effect of snow is such that only near-surface ground freezes and deep-water drainage is uninterrupted.

While snow and ice act to insulate the surface from large energy losses in winter, they also act to retard warming in the spring and summer because of the large amount of energy required to melt ice (the latent heat of fusion, 3.34 x 105 J/kg at 0°C). However, the strong static stability of the atmosphere over areas of extensive snow or ice tends to confine the immediate cooling effect to a relatively shallow layer, so that associated atmospheric anomalies are usually short-lived and local to regional in scale. In some areas of the world such as Eurasia, however, the cooling associated with a heavy snowpack and moist spring soils is known to play a role in modulating the summer monsoon circulation. Gutzler and Preston (1997) recently presented evidence for a similar snow-summer circulation feedback over the southwestern United States.

The role of snow cover in modulating the monsoon is just one example of a short-term cryosphere-climate feedback involving the land surface and the atmosphere. From Figure 1 it can be seen that there are numerous cryosphere-climate feedbacks in the global climate system. These operate over a wide range of spatial and temporal scales from local seasonal cooling of air temperatures to hemispheric-scale variations in ice sheets over time-scales of thousands of years. The feedback mechanisms involved are often complex and incompletely understood. For example, Curry et al. (1995) showed that the so-called “simple” sea ice-albedo feedback involved complex interactions with lead fraction, melt ponds, ice thickness, snow cover, and sea-ice extent.

Read more about this topic:  Cryosphere

Famous quotes containing the word structure:

    Vashtar: So it’s finished. A structure to house one man and the greatest treasure of all time.
    Senta: And a structure that will last for all time.
    Vashtar: Only history will tell that.
    Senta: Sire, will he not be remembered?
    Vashtar: Yes, he’ll be remembered. The pyramid’ll keep his memory alive. In that he built better than he knew.
    William Faulkner (1897–1962)

    If rightly made, a boat would be a sort of amphibious animal, a creature of two elements, related by one half its structure to some swift and shapely fish, and by the other to some strong-winged and graceful bird.
    Henry David Thoreau (1817–1862)

    ... the structure of our public morality crashed to earth. Above its grave a tombstone read, “Be tolerant—even of evil.” Logically the next step would be to say to our commonwealth’s criminals, “I disagree that it’s all right to rob and murder, but naturally I respect your opinion.” Tolerance is only complacence when it makes no distinction between right and wrong.
    Sarah Patton Boyle, U.S. civil rights activist and author. The Desegregated Heart, part 2, ch. 2 (1962)