Critical Dimension - Upper Critical Dimension in Field Theory

Upper Critical Dimension in Field Theory

Determining the upper critical dimension of a field theory is a matter of linear algebra. It nevertheless is worthwhile to formalize the procedure because it yields the lowest-order approximation for scaling and essential input for the renormalization group. It also reveals conditions to have a critical model in the first place.

A Lagrangian may be written as a sum of terms, each consisting of an integral over a monomial of coordinates xi and fields φi. Examples are the standard φ4-model and the isotropic Lifshitz tricritical point with Lagrangians

see also the figure on the right. This simple structure may be compatible with a scale invariance under a rescaling of the coordinates and fields with a factor b according to

\displaystyle x_{i}\rightarrow x_{i}b^{\left}, \phi _{i}\rightarrow
\phi _{i}b^{\left }.

Time isn't singled out here - it is just another coordinate: if the Lagrangian contains a time variable then this variable is to be rescaled as t→tb-z with some constant exponent z=-. The goal is to determine the exponent set N={,}.

One exponent, say, may be chosen arbitrarily, for example =-1. In the language of dimensional analysis this means that the exponents N are counting wave vector factors (a reciprocal length k=1/L1). Each monomial of the Lagrangian thus leads to a homogeneous linear equation ΣEi,jNj=0 for the exponents N. If there are M (inequivalent) coordinates and fields in the Lagrangian, then M such equations constitute a square matrix. If this matrix were invertible then there only would be the trivial solution N=0.

The condition det(Ei,j)=0 for a nontrivial solution gives an equation between the space dimensions, and this determines the upper critical dimension du (provided there is only one variable dimension d in the Lagrangian). A redefinition of the coordinates and fields now shows that determining the scaling exponents N is equivalent to a dimensional analysis with respect to the wavevector k, with all coupling constants occurring in the Lagrangian rendered dimensionless. Dimensionless coupling constants are the technical hallmark for the upper critical dimension.

Naive scaling at the level of the Lagrangian doesn't directly correspond to physical scaling because a cutoff is required to give a meaning to the field theory and the path integral. Changing the length scale also changes the number of degrees of freedom. This complication is taken into account by the renormalization group. The main result at the upper critical dimension is that scale invariance remains valid for large factors b, but with additional ln(b) factors in the scaling of the coordinates and fields.

What happens below or above du depends on whether one is interested in long distances (statistical field theory) or short distances (quantum field theory). Quantum field theories are trivial (convergent) below du and not renormalizable above du. Statistical field theories are trivial (convergent) above du and renormalizable below du. In the latter case there arise "anomalous" contributions to the naive scaling exponents N. These anomalous contributions to the effective critical exponents vanish at the upper critical dimension.

Naive scaling at du thus is important as zeroth order approximation. Naive scaling at the upper critical dimension also classifies terms of the Lagrangian as relevant, irrelevant or marginal. A Lagrangian is compatible with scaling if the xi- and φi -exponents Ei,j lie on a hyperplane, for examples see the figure above. N is a normal vector of this hyperplane.

Read more about this topic:  Critical Dimension

Famous quotes containing the words upper, critical, dimension, field and/or theory:

    The thirst for powerful sensations takes the upper hand both over fear and over compassion for the grief of others.
    Anton Pavlovich Chekhov (1860–1904)

    From whichever angle one looks at it, the application of racial theories remains a striking proof of the lowered demands of public opinion upon the purity of critical judgment.
    Johan Huizinga (1872–1945)

    Authority is the spiritual dimension of power because it depends upon faith in a system of meaning that decrees the necessity of the hierarchical order and so provides for the unity of imperative control.
    Shoshana Zuboff (b. 1951)

    When it had long since outgrown his purely medical implications and become a world movement which penetrated into every field of science and every domain of the intellect: literature, the history of art, religion and prehistory; mythology, folklore, pedagogy, and what not.
    Thomas Mann (1875–1955)

    The human species, according to the best theory I can form of it, is composed of two distinct races, the men who borrow and the men who lend.
    Charles Lamb (1775–1834)