Definition
Let G = (V, E) and C = (V2, E2) be two graphs, and let f: V2 → V be a surjection. Then f is a covering map from C to G if for each v ∈ V2, the restriction of f to the neighbourhood of v is a bijection onto the neighbourhood of f(v) ∈ V in G. Put otherwise, f maps edges incident to v one-to-one onto edges incident to f(v).
If there exists a covering map from C to G, then C is a covering graph, or a lift, of G. An h-lift is a lift such that the covering map f has the property that for every vertex v of G, its fiber f-1(v) has exactly h elements.
Read more about this topic: Covering Graph
Famous quotes containing the word definition:
“The man who knows governments most completely is he who troubles himself least about a definition which shall give their essence. Enjoying an intimate acquaintance with all their particularities in turn, he would naturally regard an abstract conception in which these were unified as a thing more misleading than enlightening.”
—William James (18421910)
“Was man made stupid to see his own stupidity?
Is God by definition indifferent, beyond us all?
Is the eternal truth mans fighting soul
Wherein the Beast ravens in its own avidity?”
—Richard Eberhart (b. 1904)
“... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lensif we are unaware that women even have a historywe live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.”
—Adrienne Rich (b. 1929)