Bivariate Normal Distribution
If a pair (X, Y) of random variables follows a bivariate normal distribution, the conditional mean E(X|Y) is a linear function of Y, and the conditional mean E(Y|X) is a linear function of X. The correlation coefficient r between X and Y, along with the marginal means and variances of X and Y, determines this linear relationship:
where E(X) and E(Y) are the expected values of X and Y, respectively, and σx and σy are the standard deviations of X and Y, respectively.
Read more about this topic: Correlation And Dependence
Famous quotes containing the words normal and/or distribution:
“Freedom is poetry, taking liberties with words, breaking the rules of normal speech, violating common sense. Freedom is violence.”
—Norman O. Brown (b. 1913)
“In this distribution of functions, the scholar is the delegated intellect. In the right state, he is, Man Thinking. In the degenerate state, when the victim of society, he tends to become a mere thinker, or, still worse, the parrot of other mens thinking.”
—Ralph Waldo Emerson (18031882)