Correlation and Dependence - Bivariate Normal Distribution

Bivariate Normal Distribution

If a pair (X, Y) of random variables follows a bivariate normal distribution, the conditional mean E(X|Y) is a linear function of Y, and the conditional mean E(Y|X) is a linear function of X. The correlation coefficient r between X and Y, along with the marginal means and variances of X and Y, determines this linear relationship:


E(Y|X) = E(Y) + r\sigma_y\frac{X-E(X)}{\sigma_x},

where E(X) and E(Y) are the expected values of X and Y, respectively, and σx and σy are the standard deviations of X and Y, respectively.

Read more about this topic:  Correlation And Dependence

Famous quotes containing the words normal and/or distribution:

    You know that fiction, prose rather, is possibly the roughest trade of all in writing. You do not have the reference, the old important reference. You have the sheet of blank paper, the pencil, and the obligation to invent truer than things can be true. You have to take what is not palpable and make it completely palpable and also have it seem normal and so that it can become a part of experience of the person who reads it.
    Ernest Hemingway (1899–1961)

    My topic for Army reunions ... this summer: How to prepare for war in time of peace. Not by fortifications, by navies, or by standing armies. But by policies which will add to the happiness and the comfort of all our people and which will tend to the distribution of intelligence [and] wealth equally among all. Our strength is a contented and intelligent community.
    Rutherford Birchard Hayes (1822–1893)