Bivariate Normal Distribution
If a pair (X, Y) of random variables follows a bivariate normal distribution, the conditional mean E(X|Y) is a linear function of Y, and the conditional mean E(Y|X) is a linear function of X. The correlation coefficient r between X and Y, along with the marginal means and variances of X and Y, determines this linear relationship:
where E(X) and E(Y) are the expected values of X and Y, respectively, and σx and σy are the standard deviations of X and Y, respectively.
Read more about this topic: Correlation And Dependence
Famous quotes containing the words normal and/or distribution:
“When a man says that he is Jesus or Napoleon, or that the Martians are after him, or claims something else that seems outrageous to common sense, he is labeled psychotic and locked up in a madhouse. Freedom of speech is only for normal people.”
—Thomas Szasz (b. 1920)
“There is the illusion of time, which is very deep; who has disposed of it? Mor come to the conviction that what seems the succession of thought is only the distribution of wholes into causal series.”
—Ralph Waldo Emerson (18031882)