Bivariate Normal Distribution
If a pair (X, Y) of random variables follows a bivariate normal distribution, the conditional mean E(X|Y) is a linear function of Y, and the conditional mean E(Y|X) is a linear function of X. The correlation coefficient r between X and Y, along with the marginal means and variances of X and Y, determines this linear relationship:
where E(X) and E(Y) are the expected values of X and Y, respectively, and σx and σy are the standard deviations of X and Y, respectively.
Read more about this topic: Correlation And Dependence
Famous quotes containing the words normal and/or distribution:
“Our normal waking consciousness, rational consciousness as we call it, is but one special type of consciousness, whilst all about it, parted from it by the filmiest of screens, there lie potential forms of consciousness entirely different.”
—William James (18421910)
“The question for the country now is how to secure a more equal distribution of property among the people. There can be no republican institutions with vast masses of property permanently in a few hands, and large masses of voters without property.... Let no man get by inheritance, or by will, more than will produce at four per cent interest an income ... of fifteen thousand dollars] per year, or an estate of five hundred thousand dollars.”
—Rutherford Birchard Hayes (18221893)