Cooper Pair

In condensed matter physics, a Cooper pair or BCS pair is two electrons (or other fermions) that are bound together at low temperatures in a certain manner first described in 1956 by American physicist Leon Cooper. Cooper showed that an arbitrarily small attraction between electrons in a metal can cause a paired state of electrons to have a lower energy than the Fermi energy, which implies that the pair is bound. In conventional superconductors, this attraction is due to the electron–phonon interaction. The Cooper pair state is responsible for superconductivity, as described in the BCS theory developed by John Bardeen, Leon Cooper, and John Schrieffer for which they shared the 1972 Nobel Prize.

Although Cooper pairing is a quantum effect, the reason for the pairing can be seen from a simplified classical explanation. An electron in a metal normally behaves as a free particle. The electron is repelled from other electrons due to their negative charge, but it also attracts the positive ions that make up the rigid lattice of the metal. This attraction distorts the ion lattice, moving the ions slightly toward the electron, increasing the positive charge density of the lattice in the vicinity. This positive charge can attract other electrons. At long distances this attraction between electrons due to the displaced ions can overcome the electrons' repulsion due to their negative charge, and cause them to pair up. The rigorous quantum mechanical explanation shows that the effect is due to electron–phonon interactions.

The energy of the pairing interaction is quite weak, of the order of 10−3eV, and thermal energy can easily break the pairs. So only at low temperatures are a significant number of the electrons in a metal in Cooper pairs. The electrons in a pair are not necessarily close together; because the interaction is long range, paired electrons may still be many hundreds of nanometers apart. This distance is usually greater than the average interelectron distance, so many Cooper pairs can occupy the same space. Electrons have spin-1⁄2, so they are fermions, but a Cooper pair is a composite boson as its total spin is integer (0 or 1). This means the wave functions are symmetric under particle interchange, and they are allowed to be in the same state. The tendency for all the Cooper pairs in a body to 'condense' into the same ground quantum state is responsible for the peculiar properties of superconductivity.

The BCS theory is also applicable to other fermion systems, such as helium-3. Indeed, Cooper pairing is responsible for the superfluidity of helium-3 at low temperatures. It has also been recently demonstrated that a Cooper pair can comprise two bosons. Here the pairing is supported by entanglement in an optical lattice.

Read more about Cooper Pair:  Relationship To Superconductivity

Famous quotes containing the words cooper and/or pair:

    Humanity from the first has had its vultures and sharks, and representatives of the fraternity who prey upon mankind may be expected no less in America than elsewhere. That this virulence breaks out most readily and commonly against colored persons in this country, is due of course to the fact that they are, generally speaking, weak and can be imposed upon with impunity. Bullies are always cowards at heart ...
    —Anna Julia Cooper (1859–1964)

    Firm-style bean curd insoles cushion feet, absorb perspiration and provide more protein than meat or fish innersoles of twice the weight. Tofu compresses with use, becoming more pungent and flavorful. May be removed when not in use to dry or marinate. Innersoles are ready to eat after 1,200 miles of wear. Each pair provides adult protein requirement for 2 meals. Insoles are sized large to allow for snacks. Recipe booklet included.
    Alfred Gingold, U.S. humorist. Items From Our Catalogue, “Tofu Innersoles,” Avon Books (1982)