Partial Order Defined By A Convex Cone
A pointed and salient convex cone C induces a partial ordering "≤" on V, defined so that x≤y if and only if y − x C. (If the cone is flat, the same definition gives merely a preorder.) Sums and positive scalar multiples of valid inequalities with respect to this order remain valid inequalities. A vector space with such an order is called an ordered vector space. Examples include the product order on real-valued vectors and the Loewner order on matrices.
Read more about this topic: Convex Cone
Famous quotes containing the words partial order, partial, order and/or defined:
“Both the man of science and the man of art live always at the edge of mystery, surrounded by it. Both, as a measure of their creation, have always had to do with the harmonization of what is new with what is familiar, with the balance between novelty and synthesis, with the struggle to make partial order in total chaos.... This cannot be an easy life.”
—J. Robert Oppenheimer (19041967)
“And meanwhile we have gone on living,
Living and partly living,
Picking together the pieces,
Gathering faggots at nightfall,
Building a partial shelter,
For sleeping and eating and drinking and laughter.”
—T.S. (Thomas Stearns)
“Man needs to know but little more than a lobster in order to catch him in his traps.”
—Henry David Thoreau (18171862)
“The human race is a zone of living things that should be defined by tracing its confines.”
—Italo Calvino (19231985)