Contact Lens - Current Research

Current Research

A large segment of current contact lens research is directed towards the treatment and prevention of conditions resulting from contact lens contamination and colonization by foreign organisms. It is generally accepted by clinicians that the most significant complication of contact lens wear is microbial keratitis and that the most predominant microbial pathogen is Pseudomonas aeruginosa. Other organisms are also major causative factors in bacterial keratitis associated with contact lens wear, although their prevalence varies across different locations. These include both the Staphylococcus species (aureus and epidermidis) and the Streptococcus species, among others. Microbial keratitis is a serious focal point of current research due to its potentially devastating effect on the eye, including severe vision loss.

One specific research topic of interest is how microbes such as Pseudomonas aeruginosa invade the eye and cause infection. Although the pathogenesis of microbial keratitis is not well understood, many different factors have been investigated. One group of researchers showed that corneal hypoxia exacerbated Pseudomonas binding to the corneal epithelium, internalization of the microbes, and induction of the inflammatory response. One way to alleviate hypoxia is to increase the amount of oxygen transmitted to the cornea. Although silicone-hydrogel lenses almost eliminate hypoxia in patients due to their very high levels of oxygen transmissibility, they also seem to provide a more efficient platform for bacterial contamination and corneal infiltration than other conventional hydrogel soft contact lenses. A recent study showed that Pseudomonas aeruginosa and Staphylococcus epidermis adhere much more strongly to silicone hydrogel contact lenses than conventional hydrogel contact lenses and that adhesion of Pseudomonas aeruginosa was 20 times stronger than adhesion of Staphylococcus epidermidis. This might help to explain one reason why Pseudomonas infections are the most predominant.

Another important area of contact lens research deals with patient compliance. Compliance is a major issue surrounding the use of contact lenses because patient noncompliance often leads to contamination of the lens, storage case, or both. The introduction of multipurpose solutions and daily disposable lenses have helped to alleviate some of the problems observed from inadequate cleaning but new methods of combating microbial contamination are currently being developed. A silver-impregnated lens case has been developed which helps to eradicate any potentially contaminating microbes that come in contact with the lens case. Additionally, a number of antimicrobial agents are being developed that have been embedded into contact lenses themselves. Contact lenses with covalently attached Selenium molecules have been shown to reduce bacterial colonization without adversely affecting the cornea of a rabbit eye and octylglucoside used as a contact lens surfactant significantly decreases bacterial adhesion. These compounds are of particular interest to contact lens manufacturers and prescribing optometrists because they do not require any patient compliance to effectively attenuate the effects of bacterial colonization.

A recent area of research is in the field of bionic lenses. LED lights and circuitry have been designed into recent contact lenses (http://news.cnet.com/2300-11393_3-6227089.html) based on the early research of Eric Booth in the 70s, who specialized in both train engineering and electrical engineering. He attempted to design transistor circuitry in early rigid contact lenses, but not until 2011 was the research perfected with the use of red LED lighting.

Read more about this topic:  Contact Lens

Famous quotes containing the words current and/or research:

    Gradually the village murmur subsided, and we seemed to be embarked on the placid current of our dreams, floating from past to future as silently as one awakes to fresh morning or evening thoughts.
    Henry David Thoreau (1817–1862)

    Our science has become terrible, our research dangerous, our findings deadly. We physicists have to make peace with reality. Reality is not as strong as we are. We will ruin reality.
    Friedrich Dürrenmatt (1921–1990)