Congruence Relation - Universal Algebra

Universal Algebra

The idea is generalized in universal algebra: A congruence relation on an algebra A is a subset of the direct product A × A that is both an equivalence relation on A and a subalgebra of A × A.

The kernel of a homomorphism is always a congruence. Indeed, every congruence arises as a kernel. For a given congruence ~ on A, the set A/~ of equivalence classes can be given the structure of an algebra in a natural fashion, the quotient algebra. The function that maps every element of A to its equivalence class is a homomorphism, and the kernel of this homomorphism is ~.

The lattice Con(A) of all congruence relations on an algebra A is algebraic.

Read more about this topic:  Congruence Relation

Famous quotes containing the words universal and/or algebra:

    It is long ere we discover how rich we are. Our history, we are sure, is quite tame: we have nothing to write, nothing to infer. But our wiser years still run back to the despised recollections of childhood, and always we are fishing up some wonderful article out of that pond; until, by and by, we begin to suspect that the biography of the one foolish person we know is, in reality, nothing less than the miniature paraphrase of the hundred volumes of the Universal History.
    Ralph Waldo Emerson (1803–1882)

    Poetry has become the higher algebra of metaphors.
    José Ortega Y Gasset (1883–1955)