Conformal Geometry

In mathematics, conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space. In two real dimensions, conformal geometry is precisely the geometry of Riemann surfaces. In more than two dimensions, conformal geometry may refer either to the study of conformal transformations of "flat" spaces (such as Euclidean spaces or spheres), or, more commonly, to the study of conformal manifolds which are Riemannian or pseudo-Riemannian manifolds with a class of metrics defined up to scale. Study of the flat structures is sometimes termed Möbius geometry, and is a type of Klein geometry.

Read more about Conformal Geometry:  Conformal Manifolds, Möbius Geometry

Famous quotes containing the word geometry:

    ... geometry became a symbol for human relations, except that it was better, because in geometry things never go bad. If certain things occur, if certain lines meet, an angle is born. You cannot fail. It’s not going to fail; it is eternal. I found in rules of mathematics a peace and a trust that I could not place in human beings. This sublimation was total and remained total. Thus, I’m able to avoid or manipulate or process pain.
    Louise Bourgeois (b. 1911)