Computational Fluid Dynamics - Methodology

Methodology

In all of these approaches the same basic procedure is followed.

  • During preprocessing
    • The geometry (physical bounds) of the problem is defined.
    • The volume occupied by the fluid is divided into discrete cells (the mesh). The mesh may be uniform or non uniform.
    • The physical modeling is defined – for example, the equations of motions + enthalpy + radiation + species conservation
    • Boundary conditions are defined. This involves specifying the fluid behaviour and properties at the boundaries of the problem. For transient problems, the initial conditions are also defined.
  • The simulation is started and the equations are solved iteratively as a steady-state or transient.
  • Finally a postprocessor is used for the analysis and visualization of the resulting solution.

Read more about this topic:  Computational Fluid Dynamics

Famous quotes containing the word methodology:

    One might get the impression that I recommend a new methodology which replaces induction by counterinduction and uses a multiplicity of theories, metaphysical views, fairy tales, instead of the customary pair theory/observation. This impression would certainly be mistaken. My intention is not to replace one set of general rules by another such set: my intention is rather to convince the reader that all methodologies, even the most obvious ones, have their limits.
    Paul Feyerabend (1924–1994)