Complexification - Formal Definition

Formal Definition

Let V be a real vector space. The complexification of V is defined by taking the tensor product of V with the complex numbers (thought of as a two-dimensional vector space over the reals):

The subscript R on the tensor product indicates that the tensor product is taken over the real numbers (since V is a real vector space this is the only sensible option anyway, so the subscript can safely be omitted). As it stands VC is only a real vector space. However, we can make VC into a complex vector space by defining complex multiplication as follows:

More generally, complexification is an example of extension of scalars – here extending scalars from the real numbers to the complex numbers – which can be done for any field extension, or indeed for any morphism of rings.

Formally, complexification is a functor VectR → VectC, from the category of real vector spaces to the category of complex vector spaces. This is the adjoint functor – specifically the left adjoint – to the forgetful functor VectC → VectR from forgetting the complex structure.

Read more about this topic:  Complexification

Famous quotes containing the words formal and/or definition:

    Two clergymen disputing whether ordination would be valid without the imposition of both hands, the more formal one said, “Do you think the Holy Dove could fly down with only one wing?”
    Horace Walpole (1717–1797)

    ... if, as women, we accept a philosophy of history that asserts that women are by definition assimilated into the male universal, that we can understand our past through a male lens—if we are unaware that women even have a history—we live our lives similarly unanchored, drifting in response to a veering wind of myth and bias.
    Adrienne Rich (b. 1929)