Complexification - Dual Spaces and Tensor Products

Dual Spaces and Tensor Products

The dual of a real vector space V is the space V* of all real linear maps from V to R. The complexification of V* can naturally be thought of as the space of all real linear maps from V to C (denoted HomR(V,C)). That is,

The isomorphism is given by

where φ1 and φ2 are elements of V*. Complex conjugation is then given by the usual operation

Given a real linear map φ : VC we may extend by linearity to obtain a complex linear map φ : VCC. That is,

This extension gives an isomorphism from HomR(V,C)) to HomC(VC,C). The latter is just the complex dual space to VC, so we have a natural isomorphism:

More generally, given real vector spaces V and W there is a natural isomorphism

Complexification also commutes with the operations of taking tensor products, exterior powers and symmetric powers. For example, if V and W are real vector spaces there is a natural isomorphism

Note the left-hand tensor product is taken over the reals while the right-hand one is taken over the complexes. The same pattern is true in general. For instance, one has

In all cases, the isomorphisms are the “obvious” ones.

Read more about this topic:  Complexification

Famous quotes containing the words dual, spaces and/or products:

    Thee for my recitative,
    Thee in the driving storm even as now, the snow, the winter-day
    declining,
    Thee in thy panoply, thy measur’d dual throbbing and thy beat
    convulsive,
    Thy black cylindric body, golden brass and silvery steel,
    Walt Whitman (1819–1892)

    Le silence éternel de ces espaces infinis m’effraie. The eternal silence of these infinite spaces frightens me.
    Blaise Pascal (1623–1662)

    Isn’t it odd that networks accept billions of dollars from advertisers to teach people to use products and then proclaim that children aren’t learning about violence from their steady diet of it on television!
    Toni Liebman (20th century)