Golay Pair
A complementary pair a, b may be encoded as polynomials A(z) = a(0) + a(1)z + ... + a(N − 1)zN−1 and similarly for B(z). The complementarity property of the sequences is equivalent to the condition
for all z on the unit circle, that is, |z| = 1. If so, A and B form a Golay pair of polynomials. Examples include the Shapiro polynomials, which give rise to complementary sequences of length a power of 2.
Read more about this topic: Complementary Sequences
Famous quotes containing the word pair:
“... the Ovarian Theory of Literature, or, rather, its complement, the Testicular Theory. A recent camp follower ... of this explicit theory is ... Norman Mailer, who has attributed his own gift, and the literary gift in general, solely and directly to the possession of a specific pair of organs. One writes with these organs, Mailer has said ... and I have always wondered with what shade of ink he manages to do it.”
—Cynthia Ozick (b. 1928)