Column Space - Definition

Definition

Let A be an m × n matrix, with column vectors v1, v2, ..., vn. A linear combination of these vectors is any vector of the form

where c1, c2, ..., cn are scalars. The set of all possible linear combinations of v1,...,vn is called the column space of A. That is, the column space of A is the span of the vectors v1,...,vn.

Example
If, then the column vectors are v1 = (1, 0, 2)T and v2 = (0, 1, 0)T.
A linear combination of v1 and v2 is any vector of the form
The set of all such vectors is the column space of A. In this case, the column space is precisely the set of vectors (x, y, z) ∈ R3 satisfying the equation z = 2x (using Cartesian coordinates, this set is a plane through the origin in three-dimensional space).

Any linear combination of the column vectors of a matrix A can be written as the product of A with a column vector:

Therefore, the column space of A consists of all possible products Ax, for xRn. This is the same as the image (or range) of the corresponding matrix transformation.

Read more about this topic:  Column Space

Famous quotes containing the word definition:

    Perhaps the best definition of progress would be the continuing efforts of men and women to narrow the gap between the convenience of the powers that be and the unwritten charter.
    Nadine Gordimer (b. 1923)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    It’s a rare parent who can see his or her child clearly and objectively. At a school board meeting I attended . . . the only definition of a gifted child on which everyone in the audience could agree was “mine.”
    Jane Adams (20th century)