Collision Detection - Overview

Overview

In physical simulation, we wish to conduct experiments, such as playing billiards. The physics of bouncing billiard balls are well understood, under the umbrella of rigid body motion and elastic collisions. An initial description of the situation would be given, with a very precise physical description of the billiard table and balls, as well as initial positions of all the balls. Given a force applied to the cue ball (probably resulting from a player hitting the ball with his or her cue stick), we want to calculate the trajectories, precise motion, and eventual resting places of all the balls with a computer program. A program to simulate this game would consist of several portions, one of which would be responsible for calculating the precise impacts between the billiard balls. This particular example also turns out to be numerically unstable: a small error in any calculation will cause drastic changes in the final position of the billiard balls.

Video games have similar requirements, with some crucial differences. While physical simulation needs to simulate real-world physics as precisely as possible, video games need to simulate real-world physics in an acceptable way, in real time and robustly. Compromises are allowed, so long as the resulting simulation is satisfying to the game players.

Read more about this topic:  Collision Detection