Classical Electromagnetism and Special Relativity

Classical Electromagnetism And Special Relativity

The theory of special relativity plays an important role in the modern theory of classical electromagnetism. First of all, it gives formulas for how electromagnetic objects, in particular the electric and magnetic fields, are altered under a Lorentz transformation from one inertial frame of reference to another. Secondly, it sheds light on the relationship between electricity and magnetism, showing that frame of reference determines if an observation follows electrostatic or magnetic laws. Third, it motivates a compact and convenient notation for the laws of electromagnetism, namely the "manifestly covariant" tensor form.

Maxwell's equations, when they were first stated in their complete form in 1865, would turn out to be compatible with special relativity. Moreover, the apparent coincidences in which the same effect was observed due to different physical phenomena by two different observers would be shown to be not coincidental in the least by special relativity. In fact, half of Einstein's 1905 first paper on special relativity, "On the Electrodynamics of Moving Bodies," explains how to transform Maxwell's equations.

Read more about Classical Electromagnetism And Special Relativity:  Relationship Between Electricity and Magnetism, Covariant Formulation in Vacuum

Famous quotes containing the words classical, special and/or relativity:

    Culture is a sham if it is only a sort of Gothic front put on an iron building—like Tower Bridge—or a classical front put on a steel frame—like the Daily Telegraph building in Fleet Street. Culture, if it is to be a real thing and a holy thing, must be the product of what we actually do for a living—not something added, like sugar on a pill.
    Eric Gill (1882–1940)

    The line that I am urging as today’s conventional wisdom is not a denial of consciousness. It is often called, with more reason, a repudiation of mind. It is indeed a repudiation of mind as a second substance, over and above body. It can be described less harshly as an identification of mind with some of the faculties, states, and activities of the body. Mental states and events are a special subclass of the states and events of the human or animal body.
    Willard Van Orman Quine (b. 1908)

    By an application of the theory of relativity to the taste of readers, to-day in Germany I am called a German man of science, and in England I am represented as a Swiss Jew. If I come to be regarded as a bĂȘte noire the descriptions will be reversed, and I shall become a Swiss Jew for the Germans and a German man of science for the English!
    Albert Einstein (1879–1955)