Church's Thesis (constructive Mathematics) - Formal Statement

Formal Statement

In first-order theories such as HA, which cannot quantify over functions directly, CT is stated as an axiom schema which says that any definable function is computable, using Kleene's T predicate to define computability. For each formula φ(x,y) of two variables, the schema includes the axiom

This axiom asserts that, if for every x there is a y satisfying φ then there is in fact an e which is the Gödel number of a general recursive function that will, for every x, produce such a y satisfying the formula.

In higher-order systems that can quantify over functions directly, CT can be stated as a single axiom which says that every function from the natural numbers to the natural numbers is computable.

Read more about this topic:  Church's Thesis (constructive Mathematics)

Famous quotes containing the words formal and/or statement:

    The manifestation of poetry in external life is formal perfection. True sentiment grows within, and art must represent internal phenomena externally.
    Franz Grillparzer (1791–1872)

    Most personal correspondence of today consists of letters the first half of which are given over to an indexed statement of why the writer hasn’t written before, followed by one paragraph of small talk, with the remainder devoted to reasons why it is imperative that the letter be brought to a close.
    Robert Benchley (1889–1945)