Formal Statement
In first-order theories such as HA, which cannot quantify over functions directly, CT is stated as an axiom schema which says that any definable function is computable, using Kleene's T predicate to define computability. For each formula φ(x,y) of two variables, the schema includes the axiom
This axiom asserts that, if for every x there is a y satisfying φ then there is in fact an e which is the Gödel number of a general recursive function that will, for every x, produce such a y satisfying the formula.
In higher-order systems that can quantify over functions directly, CT can be stated as a single axiom which says that every function from the natural numbers to the natural numbers is computable.
Read more about this topic: Church's Thesis (constructive Mathematics)
Famous quotes containing the words formal and/or statement:
“The conviction that the best way to prepare children for a harsh, rapidly changing world is to introduce formal instruction at an early age is wrong. There is simply no evidence to support it, and considerable evidence against it. Starting children early academically has not worked in the past and is not working now.”
—David Elkind (20th century)
“One is apt to be discouraged by the frequency with which Mr. Hardy has persuaded himself that a macabre subject is a poem in itself; that, if there be enough of death and the tomb in ones theme, it needs no translation into art, the bold statement of it being sufficient.”
—Rebecca West (18921983)