Relationship To Index-free Notation
Let X and Y be vector fields with components and . Then the kth component of the covariant derivative of Y with respect to X is given by
Here, the Einstein notation is used, so repeated indices indicate summation over indices and contraction with the metric tensor serves to raise and lower indices:
Keep in mind that and that, the Kronecker delta. The convention is that the metric tensor is the one with the lower indices; the correct way to obtain from is to solve the linear equations .
The statement that the connection is torsion-free, namely that
is equivalent to the statement that —in a coordinate basis— the Christoffel symbol is symmetric in the lower two indices:
The index-less transformation properties of a tensor are given by pullbacks for covariant indices, and pushforwards for contravariant indices. The article on covariant derivatives provides additional discussion of the correspondence between index-free notation and indexed notation.
Read more about this topic: Christoffel Symbols
Famous quotes containing the word relationship:
“Every man is in a state of conflict, owing to his attempt to reconcile himself and his relationship with life to his conception of harmony. This conflict makes his soul a battlefield, where the forces that wish this reconciliation fight those that do not and reject the alternative solutions they offer. Works of art are attempts to fight out this conflict in the imaginative world.”
—Rebecca West (18921983)