Chirality - Mathematics

Mathematics

In mathematics, a figure is chiral (and said to have chirality) if it cannot be mapped to its mirror image by rotations and translations alone. For example, a right shoe is different from a left shoe, and clockwise is different from anti-clockwise.

A chiral object and its mirror image are said to be enantiomorphs. The word enantiomorph stems from the Greek ἐναντίος (enantios) 'opposite' + μορφή (morphe) 'form'. A non-chiral figure is called achiral or amphichiral.

The helix (and by extension a spun string, a screw, a propeller, etc.) and Möbius strip are chiral two-dimensional objects in three-dimensional ambient space. The J, L, S and Z-shaped tetrominoes of the popular video game Tetris also exhibit chirality, but only in a two-dimensional space.

Many other familiar objects exhibit the same chiral symmetry of the human body, such as gloves, glasses (where two lenses differ in prescription), and shoes. A similar notion of chirality is considered in knot theory, as explained below.

Some chiral three-dimensional objects, such as the helix, can be assigned a right or left handedness, according to the right-hand rule.

Read more about this topic:  Chirality

Famous quotes containing the word mathematics:

    I must study politics and war that my sons may have liberty to study mathematics and philosophy.
    John Adams (1735–1826)

    The three main medieval points of view regarding universals are designated by historians as realism, conceptualism, and nominalism. Essentially these same three doctrines reappear in twentieth-century surveys of the philosophy of mathematics under the new names logicism, intuitionism, and formalism.
    Willard Van Orman Quine (b. 1908)