Chinese Remainder Theorem - Statement For General Rings

Statement For General Rings

The general form of the Chinese remainder theorem, which implies all the statements given above, can be formulated for commutative rings and ideals. If R is a commutative ring and I1, …, Ik are ideals of R which are pairwise coprime (meaning that for all ), then the product I of these ideals is equal to their intersection, and the quotient ring R/I is isomorphic to the product ring R/I1 × R/I2 × … × R/Ik via the isomorphism

such that

Here is a version of the theorem where R is not required to be commutative:

Let R be any ring with 1 (not necessarily commutative) and be pairwise coprime 2-sided ideals. Then the canonical R-module homomorphism is onto, with kernel . Hence, (as R-modules).

Read more about this topic:  Chinese Remainder Theorem

Famous quotes containing the words statement, general and/or rings:

    After the first powerful plain manifesto
    The black statement of pistons, without more fuss
    But gliding like a queen, she leaves the station.
    Stephen Spender (1909–1995)

    The general public is easy. You don’t have to answer to anyone; and as long as you follow the rules of your profession, you needn’t worry about the consequences. But the problem with the powerful and rich is that when they are sick, they really want their doctors to cure them.
    Molière [Jean Baptiste Poquelin] (1622–1673)

    It is told that some divorcees, elated by their freedom, pause on leaving the courthouse to kiss a front pillar, or even walk to the Truckee to hurl their wedding rings into the river; but boys who recover the rings declare they are of the dime-store variety, and accuse the throwers of fraudulent practices.
    —Administration in the State of Neva, U.S. public relief program. Nevada: A Guide to the Silver State (The WPA Guide to Nevada)