The First Step in The Proof of Chernoff Bounds
The Chernoff bound for a random variable X, which is the sum of n independent random variables, is obtained by applying etX for some well-chosen value of t. This method was first applied by Sergei Bernstein to prove the related Bernstein inequalities.
From Markov's inequality and using independence we can derive the following useful inequality:
For any t > 0,
In particular optimizing over t and using independence we obtain,
-
(1)
Similarly,
and so,
Read more about this topic: Chernoff Bound
Famous quotes containing the words the first, step, proof and/or bounds:
“Three elements go to make up an idea. The first is its intrinsic quality as a feeling. The second is the energy with which it affects other ideas, an energy which is infinite in the here-and-nowness of immediate sensation, finite and relative in the recency of the past. The third element is the tendency of an idea to bring along other ideas with it.”
—Charles Sanders Peirce (18391914)
“The process of education in the oldest profession in the world is like any other educational process, in that it requires time and effort and patience; it can only be acquired by taking one step at a time, though the steps become accelerated after the first few.”
—Madeleine [Blair], U.S. prostitute and madam. Madeleine, ch. 4 (1919)
“He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,it is only to be added, that, in that case, he knows them to be small.”
—Herman Melville (18191891)
“Nature seems at each mans birth to have marked out the bounds of his virtues and vices, and to have determined how good or how wicked that man shall be capable of being.”
—François, Duc De La Rochefoucauld (16131680)