Chernoff Bound - The First Step in The Proof of Chernoff Bounds

The First Step in The Proof of Chernoff Bounds

The Chernoff bound for a random variable X, which is the sum of n independent random variables, is obtained by applying etX for some well-chosen value of t. This method was first applied by Sergei Bernstein to prove the related Bernstein inequalities.

From Markov's inequality and using independence we can derive the following useful inequality:

For any t > 0,

In particular optimizing over t and using independence we obtain,

(1)

Similarly,

and so,

Read more about this topic:  Chernoff Bound

Famous quotes containing the words the first, step, proof and/or bounds:

    And yet we constantly reclaim some part of that primal spontaneity through the youngest among us, not only through their sorrow and anger but simply through everyday discoveries, life unwrapped. To see a child touch the piano keys for the first time, to watch a small body slice through the surface of the water in a clean dive, is to experience the shock, not of the new, but of the familiar revisited as though it were strange and wonderful.
    Anna Quindlen (b. 1952)

    Each instant of life is a step toward death.
    Pierre Corneille (1606–1684)

    He who has never failed somewhere, that man can not be great. Failure is the true test of greatness. And if it be said, that continual success is a proof that a man wisely knows his powers,—it is only to be added, that, in that case, he knows them to be small.
    Herman Melville (1819–1891)

    At bounds of boundless void.
    Samuel Beckett (1906–1989)