Chernoff Bound - The First Step in The Proof of Chernoff Bounds

The First Step in The Proof of Chernoff Bounds

The Chernoff bound for a random variable X, which is the sum of n independent random variables, is obtained by applying etX for some well-chosen value of t. This method was first applied by Sergei Bernstein to prove the related Bernstein inequalities.

From Markov's inequality and using independence we can derive the following useful inequality:

For any t > 0,

In particular optimizing over t and using independence we obtain,

(1)

Similarly,

and so,

Read more about this topic:  Chernoff Bound

Famous quotes containing the words step, proof and/or bounds:

    What if, both mad and blinded in their rage,
    Our foes should fling us down their mortal gage,
    And with a hostile step profane our sod!
    We shall not shrink, my brothers, but go forth
    Henry Timrod (1828–1867)

    Sculpture and painting are very justly called liberal arts; a lively and strong imagination, together with a just observation, being absolutely necessary to excel in either; which, in my opinion, is by no means the case of music, though called a liberal art, and now in Italy placed even above the other two—a proof of the decline of that country.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    What comes over a man, is it soul or mind
    That to no limits and bounds he can stay confined?
    You would say his ambition was to extend the reach
    Clear to the Arctic of every living kind.
    Why is his nature forever so hard to teach
    That though there is no fixed line between wrong and right,
    There are roughly zones whose laws must be obeyed?
    Robert Frost (1874–1963)