Sharpness of Bounds
As shown in the example above, the theorem will typically provide rather loose bounds. However, the bounds provided by Chebyshev's inequality cannot, in general (remaining sound for variables of arbitrary distribution), be improved upon. For example, for any k ≥ 1, the following example meets the bounds exactly.
For this distribution, mean μ = 0 and standard deviation σ = 1/k, so
Equality holds only for distributions that are a linear transformation of this one.
Read more about this topic: Chebyshev's Inequality
Famous quotes containing the words sharpness of, sharpness and/or bounds:
“The values by which we are to survive are not rules for just and unjust conduct, but are those deeper illuminations in whose light justice and injustice, good and evil, means and ends are seen in fearful sharpness of outline.”
—Jacob Bronowski (19081974)
“The values by which we are to survive are not rules for just and unjust conduct, but are those deeper illuminations in whose light justice and injustice, good and evil, means and ends are seen in fearful sharpness of outline.”
—Jacob Bronowski (19081974)
“Firmness yclept in heroes, kings and seamen,
That is, when they succeed; but greatly blamed
As obstinacy, both in men and women,
Wheneer their triumph pales, or star is tamed
And twill perplex the casuist in morality
To fix the due bounds of this dangerous quality.”
—George Gordon Noel Byron (17881824)