Theory of Operation
Imagine a simple case where flow passes through a straight pipe to enter centrifugal compressor. The simple flow is straight, uniform and has no vorticity. As illustrated below α1=0 deg. As the flow continues to pass into and through the centrifugal impeller, the impeller forces the flow to spin faster and faster. According to a form of Euler's fluid dynamics equation, known as "pump and turbine equation," the energy input to the fluid is proportional to the flow's local spinning velocity multiplied by the local impeller tangential velocity.
In many cases the flow leaving centrifugal impeller is near the speed of sound (340 metres/second). The flow then typically flows through a stationary compressor causing it to decelerate. As described in Bernoulli's principle, this reduction in velocity causes the pressure to rise leading to a compressed fluid.
Read more about this topic: Centrifugal Compressor
Famous quotes containing the words theory of, theory and/or operation:
“Could Shakespeare give a theory of Shakespeare?”
—Ralph Waldo Emerson (18031882)
“The struggle for existence holds as much in the intellectual as in the physical world. A theory is a species of thinking, and its right to exist is coextensive with its power of resisting extinction by its rivals.”
—Thomas Henry Huxley (182595)
“You may read any quantity of books, and you may almost as ignorant as you were at starting, if you dont have, at the back of your minds, the change for words in definite images which can only be acquired through the operation of your observing faculties on the phenomena of nature.”
—Thomas Henry Huxley (182595)