Centrifugal Compressor - Theory of Operation

Theory of Operation

Imagine a simple case where flow passes through a straight pipe to enter centrifugal compressor. The simple flow is straight, uniform and has no vorticity. As illustrated below α1=0 deg. As the flow continues to pass into and through the centrifugal impeller, the impeller forces the flow to spin faster and faster. According to a form of Euler's fluid dynamics equation, known as "pump and turbine equation," the energy input to the fluid is proportional to the flow's local spinning velocity multiplied by the local impeller tangential velocity.

In many cases the flow leaving centrifugal impeller is near the speed of sound (340 metres/second). The flow then typically flows through a stationary compressor causing it to decelerate. As described in Bernoulli's principle, this reduction in velocity causes the pressure to rise leading to a compressed fluid.

Read more about this topic:  Centrifugal Compressor

Famous quotes containing the words theory of, theory and/or operation:

    Thus the theory of description matters most.
    It is the theory of the word for those
    For whom the word is the making of the world,
    The buzzing world and lisping firmament.
    Wallace Stevens (1879–1955)

    Won’t this whole instinct matter bear revision?
    Won’t almost any theory bear revision?
    To err is human, not to, animal.
    Robert Frost (1874–1963)

    Waiting for the race to become official, he began to feel as if he had as much effect on the final outcome of the operation as a single piece of a jumbo jigsaw puzzle has to its predetermined final design. Only the addition of the missing fragments of the puzzle would reveal if the picture was as he guessed it would be.
    Stanley Kubrick (b. 1928)