Cell Polarity - Molecular Basis

Molecular Basis

Cell polarity arises primarily through the localization of specific proteins to specific areas of the cell membrane. This localization requires both the recruitment of cytoplasmic proteins to the cell membrane and polarized vesicle transport along cytoskeletal filaments to deliver transmembrane proteins from the golgi apparatus. Many of the molecules responsible for regulating cell polarity are conserved across cell types and throughout metazoan species. Examples include the PAR complex (Cdc42, PAR3, PAR6, atypical protein kinase C), Crumbs complex (Crb, PALS, PATJ, Lin7), and Scribble complex (Scrib, Dlg, Lgl). These polarity complexes are localized at the cytoplasmic side of the cell membrane, asymmetrically within cells. For example, in epithelial cells the PAR and Crumbs complexes are localized along the apical membrane and the Scribble complex along the lateral membrane. Together with a group of signaling molecules called Rho GTPases, these polarity complexes can regulate vesicle transport and also control the localization of cytoplasmic proteins primarily by regulating the phosphorylation of phospholipids called phosphoinositides. Phosphoinositides serve as docking sites for proteins at the cell membrane, and their state of phosphorylation determines which proteins can bind.

Read more about this topic:  Cell Polarity

Famous quotes containing the word basis:

    Brutus. How many times shall Caesar bleed in sport,
    That now on Pompey’s basis lies along,
    No worthier than the dust!
    Cassius. So oft as that shall be,
    So often shall the knot of us be called
    The men that gave their country liberty.
    William Shakespeare (1564–1616)