Cavitation - Hydrodynamic Cavitation

Hydrodynamic Cavitation

Hydrodynamic cavitation describes the process of vaporisation, bubble generation and bubble implosion which occurs in a flowing liquid as a result of a decrease and subsequent increase in pressure. Cavitation will only occur if the pressure declines to some point below the saturated vapour pressure of the liquid. In pipe systems, cavitation typically occurs either as the result of an increase in the kinetic energy (through an area constriction) or an increase in the pipe elevation.

Hydrodynamic cavitation can be produced by passing a liquid through a constricted channel at a specific velocity or by mechanical rotation through a liquid. In the case of the constricted channel and based on the specific (or unique) geometry of the system, the combination of pressure and kinetic energy can be created when the hydrodynamic cavitation cavern downstream of the local constriction generating high energy cavitation bubbles.

The process of bubble generation, subsequent growth and collapse of the cavitation bubbles results in very high energy densities, resulting in very high temperatures and pressures at the surface of the bubbles for a very short time. The overall liquid medium environment, therefore, remains at ambient conditions. When uncontrolled, cavitation is damaging; however, by controlling the flow of the cavitation the power is harnessed and non-destructive. Controlled cavitation can be used to enhance chemical reactions or propagate certain unexpected reactions because free radicals are generated in the process due to disassociation of vapours trapped in the cavitating bubbles.

Orifices and venturi are reported to be widely used for generating cavitation. A venturi, because of its smooth converging and diverging sections, has an inherent advantage, over the orifice, that it can generate a higher velocity at the throat for a given pressure drop across it. On the other hand, an orifice has an advantage that it can accommodate more number of holes (larger perimeter of holes) in a given cross sectional area of the pipe.

Hydrodynamic cavitation can improve industrial processes. For instance, cavitated corn slurry show higher yields in ethanol production compared to uncavitated corn slurry in dry milling facilities.

This is also used in the mineralization of bio-refractory compounds which otherwise would need extremely high temperature and pressure conditions since free radicals are generated in the process due to the dissociation of vapours trapped in the cavitating bubbles, which results in either the intensification of the chemical reaction or may even result in the propagation of certain reactions not possible under otherwise ambient conditions.

Read more about this topic:  Cavitation