Carbon-fiber-reinforced Polymer - Automotive Uses

Automotive Uses

Carbon-fiber-reinforced polymer is used extensively in high-end automobile racing. The high cost of carbon fiber is mitigated by the material's unsurpassed strength-to-weight ratio, and low weight is essential for high-performance automobile racing. Racecar manufacturers have also developed methods to give carbon fiber pieces strength in a certain direction, making it strong in a load-bearing direction, but weak in directions where little or no load would be placed on the member. Conversely, manufacturers developed omnidirectional carbon fiber weaves that apply strength in all directions. This type of carbon fiber assembly is most widely used in the "safety cell" monocoque chassis assembly of high-performance racecars.

Many supercars over the past few decades have incorporated CFRP extensively in their manufacture, using it for their monocoque chassis as well as other components.

Cast vinyl has also been used in automotive applications for aesthetics, as well as heat and abrasion resistance. Most top-of-the-line cast vinyl materials such as 3M's DiNoc (interior use) and SI's Si-1000 3D (exterior use) have lifespans of 10+ years when installed correctly.

Until recently, the material has had limited use in mass-produced cars because of the expense involved in terms of materials, equipment, and the relatively limited pool of individuals with expertise in working with it. Recently, several mainstream vehicle manufacturers have started to use CFRP in everyday road cars.

Use of the material has been more readily adopted by low-volume manufacturers who used it primarily for creating body-panels for some of their high-end cars due to its increased strength and decreased weight compared with the glass-reinforced polymer they used for the majority of their products.

Use of carbon fiber in a vehicle can appreciably reduce the weight and hence the size of its frame. This will also facilitate designers' and engineers' creativity and allow more in-cabin space for commuters.

Read more about this topic:  Carbon-fiber-reinforced Polymer