Capital Budgeting - Equivalent Annuity Method

Equivalent Annuity Method

The equivalent annuity method expresses the NPV as an annualized cash flow by dividing it by the present value of the annuity factor. It is often used when assessing only the costs of specific projects that have the same cash inflows. In this form it is known as the equivalent annual cost (EAC) method and is the cost per year of owning and operating an asset over its entire lifespan.

It is often used when comparing investment projects of unequal lifespans. For example if project A has an expected lifetime of 7 years, and project B has an expected lifetime of 11 years it would be improper to simply compare the net present values (NPVs) of the two projects, unless the projects could not be repeated.

The use of the EAC method implies that the project will be replaced by an identical project.

Alternatively the chain method can be used with the NPV method under the assumption that the projects will be replaced with the same cash flows each time. To compare projects of unequal length, say 3 years and 4 years, the projects are chained together, i.e. four repetitions of the 3 year project are compare to three repetitions of the 4 year project. The chain method and the EAC method give mathematically equivalent answers.

The assumption of the same cash flows for each link in the chain is essentially an assumption of zero inflation, so a real interest rate rather than a nominal interest rate is commonly used in the calculations.Y

Read more about this topic:  Capital Budgeting

Famous quotes containing the words equivalent and/or method:

    In truth, politeness is artificial good humor, it covers the natural want of it, and ends by rendering habitual a substitute nearly equivalent to the real virtue.
    Thomas Jefferson (1743–1826)

    The method of scientific investigation is nothing but the expression of the necessary mode of working of the human mind. It is simply the mode in which all phenomena are reasoned about, rendered precise and exact.
    Thomas Henry Huxley (1825–95)