Canonical Coordinates - Formal Development

Formal Development

Given a manifold Q, a vector field X on Q (or equivalently, a section of the tangent bundle TQ) can be thought of as a function acting on the cotangent bundle, by the duality between the tangent and cotangent spaces. That is, define a function

such that

holds for all cotangent vectors p in . Here, is a vector in, the tangent space to the manifold Q at point q. The function is called the momentum function corresponding to X.

In local coordinates, the vector field X at point q may be written as

where the are the coordinate frame on TQ. The conjugate momentum then has the expression

where the are defined as the momentum functions corresponding to the vectors :

The together with the together form a coordinate system on the cotangent bundle ; these coordinates are called the canonical coordinates.

Read more about this topic:  Canonical Coordinates

Famous quotes containing the words formal and/or development:

    Then the justice,
    In fair round belly with good capon lined,
    With eyes severe and beard of formal cut,
    Full of wise saws and modern instances;
    And so he plays his part.
    William Shakespeare (1564–1616)

    Understanding child development takes the emphasis away from the child’s character—looking at the child as good or bad. The emphasis is put on behavior as communication. Discipline is thus seen as problem-solving. The child is helped to learn a more acceptable manner of communication.
    Ellen Galinsky (20th century)