C. E. Wynn-Williams - Pre-war Research

Pre-war Research

In October 1925 he entered Trinity College, Cambridge, having been awarded a University of Wales open fellowship. Initially he continued research into short electric waves at the Cavendish Laboratory under the supervision of Sir Ernest Rutherford, and was awarded the degree of PhD for this work in 1929.

Wynn-Williams' most significant work in this period, however, was in the development of electronic instrumentation for use in radioactivity and nuclear physics. Like many scientists at that time he was a wireless enthusiast. In 1926 he employed his electronics skills to construct an amplifier using thermionic valves (vacuum tubes) for very small electrical currents. It was realized that such devices could be used in the detection and counting of subatomic particles in the nuclear disintegration experiments then being undertaken by Rutherford, who encouraged him to devote his attention to the construction of a reliable valve amplifier and methods of registering and counting particles.

There followed a series of brilliant contributions to the armamentarium of nuclear physics. In 1929–30, with H. M. Cave and F. A. B. Ward he designed and constructed a counting device using thyratrons in conjunction with a mechanical counter. By 1931 a valve amplifier and thyratron-based automatic counting system were in regular use in the Cavendish Laboratory. Wynn-Williams' amplifier played an important part in James Chadwick's discovery of the neutron in 1932, and in numerous other experiments. In 1932 Wynn-Williams published details of his thyratron-based scale-of-two counter, which allowed particles to be counted at much higher rates than previously. His devices became crucial unifying elements in the hardware of the emergent discipline of nuclear physics, as they opened up new avenues of research. They were widely copied in laboratories in Europe and the United States of America, often with advice from Wynn-Williams.

In 1935 Wynn-Williams was appointed assistant lecturer in physics at Imperial College, London. Continuing his work on electronic instrumentation he contributed to the development of nuclear physics at Imperial under G. P. Thomson.

Read more about this topic:  C. E. Wynn-Williams

Famous quotes containing the word research:

    Feeling that you have to be the perfect parent places a tremendous and completely unnecessary burden on you. If we’ve learned anything from the past half-century’s research on child development, it’s that children are remarkably resilient. You can make lots of mistakes and still wind up with great kids.
    Lawrence Kutner (20th century)