Block Matrix - Block Toeplitz Matrices

Block Toeplitz Matrices

A block Toeplitz matrix is another special block matrix, which contains blocks that are repeated down the diagonals of the matrix, as a Toeplitz matrix has elements repeated down the diagonal.

A block Toeplitz matrix A has the form


\mathbf{A} = \begin{bmatrix}
\mathbf{A}_{(1,1)} & \mathbf{A}_{(1,2)} & & & \cdots & \mathbf{A}_{(1,n-1)} & \mathbf{A}_{(1,n)} \\
\mathbf{A}_{(2,1)} & \mathbf{A}_{(1,1)} & \mathbf{A}_{(1,2)} & & & & \mathbf{A}_{(1,n-1)} \\ & \ddots & \ddots & \ddots & & & \vdots \\ & & \mathbf{A}_{(2,1)} & \mathbf{A}_{(1,1)} & \mathbf{A}_{(1,2)} & & \\
\vdots & & & \ddots & \ddots & \ddots & \\
\mathbf{A}_{(n-1,1)} & & & & \mathbf{A}_{(2,1)} & \mathbf{A}_{(1,1)} & \mathbf{A}_{(1,2)} \\
\mathbf{A}_{(n,1)} & \mathbf{A}_{(n-1,1)} & \cdots & & & \mathbf{A}_{(2,1)} & \mathbf{A}_{(1,1)}
\end{bmatrix}.

Read more about this topic:  Block Matrix

Famous quotes containing the word block:

    The skyscraper establishes the block, the block creates the street, the street offers itself to man.
    Roland Barthes (1915–1980)