Blind Deconvolution

In image processing and applied mathematics, blind deconvolution is a deconvolution technique that permits recovery of the target scene from a single or set of "blurred" images in the presence of a poorly determined or unknown point spread function (PSF). Regular linear and non-linear deconvolution techniques utilize a known PSF. For blind deconvolution, the PSF is estimated from the image or image set, allowing the deconvolution to be performed. Researchers have been studying blind deconvolution methods for several decades, and have approached the problem from different directions.

Blind deconvolution can be performed iteratively, whereby each iteration improves the estimation of the PSF and the scene, or non-iteratively, where one application of the algorithm, based on exterior information, extracts the PSF. Iterative methods include maximum a posteriori estimation and expectation-maximization algorithms. A good estimate of the PSF is helpful for quicker convergence but not necessary.

Examples of non-iterative techniques include SeDDaRA, the cepstrum transform and APEX. The cepstrum transform and APEX methods assume that the PSF has a specific shape, and one must estimate the width of the shape. For SeDDaRA, the provides information about the scene in the form of a reference image. The algorithm estimates the PSF by comparing the spatial frequency information in the blurred image to that of the target image.

Read more about Blind Deconvolution:  Mathematical Concept, High-order Statistics

Famous quotes containing the word blind:

    A dreamlike feebleness by which the blind race of man is hampered.
    Aeschylus (525–456 B.C.)