Bleomycin - Biosynthesis

Biosynthesis

Bleomycin is a nonribosomal peptide that is a hybrid peptide-polyketide natural product. The peptide/polyketide/peptide backbone of the bleomycin aglycon is assembled by the bleomycin megasynthetase, which is made of both nonribosomal peptide synthetase (NRPS) and polyketide synthase (PKS) modules. Nonribosomal peptides and polyketides are synthesized from amino acids and short carboxylic acids by NRPSs and PKSs, respectively. These NRPSs and PKSs use similar strategies for the assembly of these two distinct classes of natural products. Both NRPs and type I PKSs are organized into modules. The structural variations of the resulting peptide and polyketide products are determined by the number and order of modules on each NRPS and PKS protein.

The biosynthesis of the bleomycin aglycon can be visualized in three stages:

  1. NRPS-mediated formation of P-3A from Ser, Asn, His, and Ala
  2. PKS-mediated elongation of P-3A by malonyl CoA and AdoMet to yield P-4
  3. NRPS-mediated elongation of P-4 by Thr to P-5 that is further elongated by β-Ala, Cys, and Cys to get P-6m.

On the basis of the bleomycin structure and the deduced functions of individual NRPS and PKS domains and modules, a linear model for the bleomycin megasynthetase-templated assembly of the bleomycin peptide/polyketide/peptide aglycon was proposed from nine amino acids and one acetate.

Read more about this topic:  Bleomycin