Orders of Common Functions
Further information: Time complexity#Table of common time complexitiesHere is a list of classes of functions that are commonly encountered when analyzing the running time of an algorithm. In each case, c is a constant and n increases without bound. The slower-growing functions are generally listed first.
Notation | Name | Example |
---|---|---|
constant | Determining if a number is even or odd; using a constant-size lookup table | |
double logarithmic | Finding an item using interpolation search in a sorted array of uniformly distributed values. | |
logarithmic | Finding an item in a sorted array with a binary search or a balanced search tree as well as all operations in a Binomial heap. | |
fractional power | Searching in a kd-tree | |
linear | Finding an item in an unsorted list or a malformed tree (worst case) or in an unsorted array; Adding two n-bit integers by ripple carry. | |
n log-star n | Performing triangulation of a simple polygon using Seidel's algorithm. (Note ![]() |
|
linearithmic, loglinear, or quasilinear | Performing a Fast Fourier transform; heapsort, quicksort (best and average case), or merge sort | |
quadratic | Multiplying two n-digit numbers by a simple algorithm; bubble sort (worst case or naive implementation), Shell sort, quicksort (worst case), selection sort or insertion sort | |
polynomial or algebraic | Tree-adjoining grammar parsing; maximum matching for bipartite graphs | |
L-notation or sub-exponential | Factoring a number using the quadratic sieve or number field sieve | |
exponential | Finding the (exact) solution to the travelling salesman problem using dynamic programming; determining if two logical statements are equivalent using brute-force search | |
factorial | Solving the traveling salesman problem via brute-force search; generating all unrestricted permutations of a poset; finding the determinant with expansion by minors. |
The statement is sometimes weakened to to derive simpler formulas for asymptotic complexity. For any and, is a subset of for any, so may be considered as a polynomial with some bigger order.
Read more about this topic: Big O Notation
Famous quotes containing the words orders of, orders, common and/or functions:
“One cannot be a good historian of the outward, visible world without giving some thought to the hidden, private life of ordinary people; and on the other hand one cannot be a good historian of this inner life without taking into account outward events where these are relevant. They are two orders of fact which reflect each other, which are always linked and which sometimes provoke each other.”
—Victor Hugo (18021885)
“What is all wisdom save a collection of platitudes? Take fifty of our current proverbial sayingsthey are so trite, so threadbare, that we can hardly bring our lips to utter them. None the less they embody the concentrated experience of the race and the man who orders his life according to their teaching cannot go far wrong.”
—Norman Douglas (18681952)
“The aim of every political constitution is, or ought to be, first to obtain for rulers men who possess most wisdom to discern, and most virtue to pursue, the common good of the society; and in the next place, to take the most effectual precautions for keeping them virtuous whilst they continue to hold their public trust.”
—James Madison (17511836)
“Mark the babe
Not long accustomed to this breathing world;
One that hath barely learned to shape a smile,
Though yet irrational of soul, to grasp
With tiny fingerto let fall a tear;
And, as the heavy cloud of sleep dissolves,
To stretch his limbs, bemocking, as might seem,
The outward functions of intelligent man.”
—William Wordsworth (17701850)