Bifurcation Theory - Applications in Semiclassical and Quantum Physics

Applications in Semiclassical and Quantum Physics

Bifurcation theory has been applied to connect quantum systems to the dynamics of their classical analogues in atomic systems, molecular systems, and resonant tunneling diodes. Bifurcation theory has also been applied to the study of laser dynamics and a number of theoretical examples which are difficult to access experimentally such as the kicked top and coupled quantum wells. The dominant reason for the link between quantum systems and bifurcations in the classical equations of motion is that at bifurcations, the signature of classical orbits becomes large, as Martin Gutzwiller points out in his classic work on quantum chaos. Many kinds of bifurcations have been studied with regard to links between classical and quantum dynamics including saddle node bifurcations, Hopf bifurcations, umbilic bifurcations, period doubling bifurcations, reconnection bifurcations, tangent bifurcations, and cusp bifurcations.

Read more about this topic:  Bifurcation Theory

Famous quotes containing the words quantum and/or physics:

    The receipt to make a speaker, and an applauded one too, is short and easy.—Take of common sense quantum sufficit, add a little application to the rules and orders of the House, throw obvious thoughts in a new light, and make up the whole with a large quantity of purity, correctness, and elegancy of style.
    Philip Dormer Stanhope, 4th Earl Chesterfield (1694–1773)

    The labor we delight in physics pain.
    William Shakespeare (1564–1616)