Bell Number - Asymptotic Limit and Bounds

Asymptotic Limit and Bounds

Several asymptotic formulae for the Bell numbers are known. One such is

Here

where W is the Lambert W function. (Lovász, 1993)

Moser and Wyman established the expansion

uniformly for as, where and each and are known expressions in .

In (Berend, D. and Tassa, T., 2010), the following bounds were established:

moreover, if then for all ,

where and  ~d(x):= \ln \ln (x+1) - \ln \ln x + \frac{1+e^{-1}}{\ln x}\,.

Read more about this topic:  Bell Number

Famous quotes containing the words limit and/or bounds:

    ... there are two types of happiness and I have chosen that of the murderers. For I am happy. There was a time when I thought I had reached the limit of distress. Beyond that limit, there is a sterile and magnificent happiness.
    Albert Camus (1913–1960)

    Prohibition will work great injury to the cause of temperance. It is a species of intemperance within itself, for it goes beyond the bounds of reason in that it attempts to control a man’s appetite by legislation, and makes a crime out of things that are not crimes. A Prohibition law strikes a blow at the very principles upon which our government was founded.
    Abraham Lincoln (1809–1865)