Background Radiation - Human-caused Background Radiation

Human-caused Background Radiation

The global average human exposure to human caused radiation is 0.6 mSv/yr, primarily from medical imaging. Exposure from medical and radiotherapy tests can range much higher, with an average of 3 mSv per year across the USA population. Other human contributors include smoking, air travel, radioactive building materials, historical nuclear weapons testing, nuclear power accidents and nuclear industry operation.

The Nuclear Regulatory Commission, the United States Environmental Protection Agency, and other U.S. and international agencies, require that licensees limit radiation exposure to individual members of the public to 1 mSv (100 mrem) per year, and limit occupational radiation exposure to adults working with radioactive material to 50 mSv (5 rem) per year, and 100 mSv (10 rem) in 5 years.

A typical chest x-ray delivers 0.02 mSv (2 mrem) of effective dose. A dental x-ray delivers a dose of 5 to 10 µSv The average American receives about 3 mSv of diagnostic medical dose per year; countries with the lowest levels of health care receive almost none. Radiation treatment for various diseases also accounts for some dose, both in individuals and in those around them.

Frequent above-ground nuclear explosions between the 1940s and 1960s scattered a substantial amount of radioactive contamination. Some of this contamination is local, rendering the immediate surroundings highly radioactive, while some of it is carried longer distances as nuclear fallout; some of this material is dispersed worldwide. The increase in background radiation due to these tests peaked in 1963 at about 0.15 mSv per year worldwide, or about 7% of average background dose from all sources. The Limited Test Ban Treaty of 1963 prohibited above-ground tests, thus by the year 2000 the worldwide dose from these tests has decreased to only 0.005 mSv per year.

Coal plants emit radiation in the form of radioactive fly ash which is inhaled and ingested by neighbours, and incorporated into crops. A 1978 paper from Oak Ridge National Laboratory estimated that coal-fired power plants of that time may contribute a whole-body committed dose of 19 µSv/yr to their immediate neighbours in a radius of 500 m. The United Nations Scientific Committee on the Effects of Atomic Radiation's 1988 report estimated the committed dose 1 km away to be 20 µSv/yr for older plants or 1µSv/yr for newer plants with improved fly ash capture, but was unable to confirm these numbers by test. When coal is burned, uranium, thorium and all the uranium daughters accumulated by disintegration — radium, radon, polonium — are released. Radioactive materials previously buried underground in coal deposits are released as fly ash or, if fly ash is captured, may be incorporated into concrete manufactured with fly ash.

Under normal circumstances, a modern nuclear reactor releases small amounts of radioactive contamination. While the radiation released in minor accidents varies, major accidents like Windscale fire (Sellafield accident), the Chernobyl accident, and the Fukushima I nuclear accidents release massive radioactive contamination into the environment.

Radiation levels at the stricken Fukushima I power plant have varied spiking up to 1,000 mSv/h (millisievert per hour), which is a level that can cause radiation sickness to occur at a later time following a one hour exposure. Significant release in emissions of radioactive particles took place following hydrogen explosions at three reactors, as technicians tried to pump in seawater to keep the uranium fuel rods cool, and bled radioactive gas from the reactors in order to make room for the seawater. Concerns about the possibility of a large scale radiation leak resulted in 20 km exclusion zone being set up around the power plant and people within the 20–30 km zone being advised to stay indoors. Later, the UK, France and some other countries told their nationals to consider leaving Tokyo, in response to fears of spreading nuclear contamination. New Scientist has reported that emissions of radioactive iodine and cesium from the crippled Fukushima I nuclear plant have approached levels evident after the Chernobyl disaster in 1986. On March 24, 2011, Japanese officials announced that "radioactive iodine-131 exceeding safety limits for infants had been detected at 18 water-purification plants in Tokyo and five other prefectures". See Radiation effects from Fukushima Daiichi nuclear disaster.

Read more about this topic:  Background Radiation

Famous quotes containing the words background and/or radiation:

    They were more than hostile. In the first place, I was a south Georgian and I was looked upon as a fiscal conservative, and the Atlanta newspapers quite erroneously, because they didn’t know anything about me or my background here in Plains, decided that I was also a racial conservative.
    Jimmy Carter (James Earl Carter, Jr.)

    There are no accidents, only nature throwing her weight around. Even the bomb merely releases energy that nature has put there. Nuclear war would be just a spark in the grandeur of space. Nor can radiation “alter” nature: she will absorb it all. After the bomb, nature will pick up the cards we have spilled, shuffle them, and begin her game again.
    Camille Paglia (b. 1947)