Autodyne

The autodyne circuit was an improvement to radio signal amplification using the De Forest Audion vacuum tube amplifier. By allowing the tube to oscillate at a frequency slightly different from the desired signal, the sensitivity over other receivers was greatly improved. The autodyne circuit was discovered by Edwin Howard Armstrong of Columbia University, New York, NY. He inserted a tuned circuit in the output circuit of the Audion vacuum tube amplifier. By adjusting the tuning of this tuned circuit, Armstrong was able to dramatically increase the gain of the Audion amplifier. Further increase in tuning resulted in the Audion amplifier reaching self-oscillation.

This oscillating receiver circuit meant that the newly produced CW or continuous wave transmissions could be aurally decoded. Previously only spark, ICW (Interrupted Continuous Wave) signals which were produced by a motor chopping or turning the signal quickly on and off at an audio rate, or modulated continuous wave (MCW), could be decoded.

When the autodyne oscillator was advanced to self-oscillation, continuous wave Morse code dots and dashes would be clearly heard as a series of beeps, instead of an all but impossible to decode series of thumps. Spark and chopped CW (ICW) had audio tones which didn't require an oscillating detector to extract from the radio signal. Such a regenerative circuit is capable of receiving weak signals, if carefully coupled to an antenna. Antenna coupling interacts with tuning, making optimum adjustments difficult.

Read more about Autodyne:  Application