Aurora (astronomy) - Sources and Types

Sources and Types

This article appears to contain unverifiable speculation and unjustified claims. Information must be verifiable and based on reliable published sources. Please remove unverified speculation from the article.

Understanding is very incomplete. There are three possible main sources:

  1. Dynamo action with the solar wind flowing past Earth, possibly producing quiet auroral arcs ("directly driven" process). The circuit of the accelerating currents and their connection to the solar wind are uncertain.
  2. Dynamo action involving plasma squeezed toward Earth by sudden convulsions of the magnetotail ("magnetic substorms"). Substorms tend to occur after prolonged spells (hours) during which the interplanetary magnetic field has an appreciable southward component, leading to a high rate of interconnection between its field lines and those of Earth. As a result the solar wind moves magnetic flux (tubes of magnetic field lines, moving together with their resident plasma) from the day side of Earth to the magnetotail, widening the obstacle it presents to the solar wind flow and causing it to be squeezed harder. Ultimately the tail plasma is torn ("magnetic reconnection"); some blobs ("plasmoids") are squeezed tailward and are carried away with the solar wind; others are squeezed toward Earth where their motion feeds large outbursts of aurora, mainly around midnight ("unloading process"). Geomagnetic storms have similar effects, but with greater vigor. The big difference is the addition of many particles to the plasma trapped around Earth, enhancing the "ring current" it carries. The resulting modification of Earth's field makes auroras visible at middle latitudes, on field lines much closer to the equator.
  3. Satellite images of the aurora from above show a "ring of fire" along the auroral oval (see above), often widest at midnight. That is the "diffuse aurora", not distinct enough to be seen by the eye. It does not seem to be associated with acceleration by electric currents (although currents and their arcs may be embedded in it) but to be due to electrons leaking out of the magnetotail.

Any magnetic trapping is leaky—there always exists a bundle of directions ("loss cone") around the guiding magnetic field lines where particles are not trapped but escape. In the radiation belts of Earth, once particles on such trajectories are gone, new ones only replace them very slowly, leaving such directions nearly "empty". In the magnetotail, however, particle trajectories seem to be constantly reshuffled, probably when the particles cross the very weak field near the equator. As a result, the flow of electrons in all directions is nearly the same ("isotropic"), and that assures a steady supply of leaking electrons.

The energization of such electrons comes from magnetotail processes. The leakage of negative electrons does not leave the tail positively charged, because each leaked electron lost to the atmosphere is quickly replaced by a low energy electron drawn upward from the ionosphere. Such replacement of "hot" electrons by "cold" ones is in complete accord with the 2nd law of thermodynamics.

Other types of auroras have been observed from space, e.g. "poleward arcs" stretching sunward across the polar cap, the related "theta aurora", and "dayside arcs" near noon. These are relatively infrequent and poorly understood. There are other interesting effects such as flickering aurora, "black aurora" and subvisual red arcs. In addition to all these, a weak glow (often deep red) has been observed around the two polar cusps, the "funnels" of field lines separating the ones that close on the day side of Earth from lines swept into the tail. The cusps allow a small amount of solar wind to reach the top of the atmosphere, producing an auroral glow.

Read more about this topic:  Aurora (astronomy)

Famous quotes containing the words sources and/or types:

    On board ship there are many sources of joy of which the land knows nothing. You may flirt and dance at sixty; and if you are awkward in the turn of a valse, you may put it down to the motion of the ship. You need wear no gloves, and may drink your soda-and-brandy without being ashamed of it.
    Anthony Trollope (1815–1882)

    The American man is a very simple and cheap mechanism. The American woman I find a complicated and expensive one. Contrasts of feminine types are possible. I am not absolutely sure that there is more than one American man.
    Henry Brooks Adams (1838–1918)