Atomic Domain

In mathematics, more specifically ring theory, an atomic domain or factorization domain is an integral domain, every non-zero non-unit of which can be written (in at least one way) as a (finite) product of irreducible elements. Atomic domains different from unique factorization domains in that this decomposition of an element into irreducibles need not be unique; stated differently, an irreducible element is not necessarily a prime. Important examples of atomic domains include the class of all unique factorization domains, and all Noetherian domains. More generally, any integral domain satisfying the ascending chain condition on principal ideals (i.e. the ACCP), is an atomic domain. Although the converse is claimed to hold in Cohn's paper, this is known to be false.

The term "atomic" is due to P. M. Cohn, who called a irreducible element of an integral domain an "atom".

Read more about Atomic Domain:  Motivation, Definition, Special Cases

Famous quotes containing the words atomic and/or domain:

    The totality of our so-called knowledge or beliefs, from the most casual matters of geography and history to the profoundest laws of atomic physics or even of pure mathematics and logic, is a man-made fabric which impinges on experience only along the edges. Or, to change the figure, total science is like a field of force whose boundary conditions are experience.
    Willard Van Orman Quine (b. 1908)

    In the domain of Political Economy, free scientific inquiry meets not merely the same enemies as in all other domains. The peculiar nature of the material it deals with, summons as foes into the field of battle the most violent, mean and malignant passions of the human breast, the Furies of private interest.
    Karl Marx (1818–1883)