Asian Soybean Rust - Disease Cycle

Disease Cycle

Soybean rust is spread by windblown spores and has caused significant crop losses in many soybean-growing regions of the world. Windblown spores can travel for great distances. It is likely that ASR will survive on vast acreages of naturalized kudzu in the southern U.S. and thereby establish a permanent presence in the continental U.S.

Phakopsora pachyrhizi (ASR) is an obligate parasite, meaning that it must have live, green tissue to survive. For this reason ASR is something that will blow in every year, as cold winters will push it back. It can overwinter in southern states, so long as it has a living host.

ASR overwinters on live host legumes and sporulates the following spring. It cannot survive on dead tissue or crop residues.

Additional hosts can serve as overwintering reservoirs for the pathogen and allow for build-up of inoculum, in those environs free from freezing temperatures. The pathogen is well adapted for long-distance dispersal, because spores can be readily carried long distances by the wind to new, rust-free regions.

Overwintering sites of soybean rust are restricted to areas with very mild winters, such as the gulf coasts of Florida, the very southernmost areas of Texas, or in Mexico. Soybean rust will not survive over the winter in the North Central region because it can't live and reproduce without green living tissue.

Spores of the soybean rust pathogen are transported readily by air currents and can be carried hundreds of miles in a few days. Weather conditions will determine when and where the spores travel from south to north.

Rust spores, called Urediniospores, are able to penetrate the plant cells directly, rather than through natural openings or through wounds in the leaf tissue. Thus infection is relatively quick: about 9 to 10 days from initial infection to the next cycle of spore production.

Rust is a multi-cyclic disease. After the initial infection is established, the infection site can produce spores for 10 to 14 days. Abundant spore production occurs during wet leaf periods (in the form of rain or dew) of at least 8 hours and moderate temperatures of 60 to 80°F.

The Process:
The infection process starts when urediniospores germinate to produce a single germ tube that grows across the leaf surface, until an appressorium forms. Appressoria form over anticlinal walls or over the center of epidermal cells, but rarely over stomata. Penetration of epidermal cells is by direct penetration through the cuticle by an appressorial peg. When appressoria form over stomata, the hyphae penetrate one of the guard cells rather than entering the leaf through the stomatal opening. This rust and related species are unique in their ability to directly penetrate the epidermis; most rust pathogens enter the leaf through stomatal openings and penetrate cells once inside the leaf. The direct penetration of the epidermal cells and the non-specific induction of appressoria in the infection process of P. pachyrhizi may aid in understanding the broad host range of the pathogen and may have consequences in the development of resistant cultivars.

Uredinia can develop 5 to 8 days after infection by urediniospores. The first urediniospores can be produced as early as 9 days after infection, and spore production can continue for up to 3 weeks. Uredinia may develop for up to 4 weeks after a single inoculation, and secondary uredinia will arise on the margins of the initial infections for an additional 8 weeks. Thus, from an initial infection, there could be first generation pustules that maintain sporulation for up to 15 weeks. Even under dry conditions this extended sporulation capacity allows the pathogen to persist and remain a threat. If conditions for re-infection are sporadic throughout the season, significant inoculum potential still remains from the initial infection to reestablish an epidemic. Successful infection is dependent on the availability of moisture on plant surfaces. At least 6 hours of free moisture is needed for infection with maximum infections occurring with 10 to 12 hours of free moisture. Temperatures between 15 and 28°C are ideal for infection.

Read more about this topic:  Asian Soybean Rust

Famous quotes containing the words disease and/or cycle:

    Is not disease the rule of existence? There is not a lily pad floating on the river but has been riddled by insects. Almost every shrub and tree has its gall, oftentimes esteemed its chief ornament and hardly to be distinguished from the fruit. If misery loves company, misery has company enough. Now, at midsummer, find me a perfect leaf or fruit.
    Henry David Thoreau (1817–1862)

    The cycle of the machine is now coming to an end. Man has learned much in the hard discipline and the shrewd, unflinching grasp of practical possibilities that the machine has provided in the last three centuries: but we can no more continue to live in the world of the machine than we could live successfully on the barren surface of the moon.
    Lewis Mumford (1895–1990)