The Artin reciprocity law, established by Emil Artin in a series of papers (1924; 1927; 1930), is a general theorem in number theory that forms a central part of global class field theory. The term "reciprocity law" refers to a long line of more concrete number theoretic statements which it generalized, from the quadratic reciprocity law and the reciprocity laws of Eisenstein and Kummer to Hilbert's product formula for the norm symbol. Artin's result provided a partial solution to Hilbert's ninth problem.
Read more about Artin Reciprocity Law: Significance, Finite Extensions of Global Fields, Cohomological Interpretation, Alternative Statement
Famous quotes containing the words reciprocity and/or law:
“Between women love is contemplative; caresses are intended less to gain possession of the other than gradually to re-create the self through her; separateness is abolished, there is no struggle, no victory, no defeat; in exact reciprocity each is at once subject and object, sovereign and slave; duality become mutuality.”
—Simone De Beauvoir (19081986)
“I had often stood on the banks of the Concord, watching the lapse of the current, an emblem of all progress, following the same law with the system, with time, and all that is made ... and at last I resolved to launch myself on its bosom and float whither it would bear me.”
—Henry David Thoreau (18171862)