Arithmetic Derivative - Definition

Definition

For natural numbers the arithmetic derivative is defined as follows:

  • for any prime .
  • for any (Leibniz rule).

To coincide with the Leibniz rule is defined to be, as is . Explicitly, assume that

where are distinct primes and are positive integers. Then

The arithmetic derivative also preserves the power rule (for primes):

where is prime and is a positive integer. For example,


\begin{align}
81' = (3^4)' & = (9\cdot 9)' = 9'\cdot 9 + 9\cdot 9' = 2 \\
& = 2 = 2 = 108 = 4\cdot 3^3.
\end{align}

The sequence of number derivatives for k = 0, 1, 2, ... begins (sequence A003415 in OEIS):

0, 0, 1, 1, 4, 1, 5, 1, 12, 6, 7, 1, 16, 1, 9, ....

E. J. Barbeau was the first to formalize this definition. He extended it to all integers by proving that uniquely defines the derivative over the integers. Barbeau also further extended it to rational numbers,showing that the familiar quotient rule gives a well-defined derivative on Q:

Victor Ufnarovski and Bo Ã…hlander expanded it to certain irrationals. In these extensions, the formula above still applies, but the exponents are allowed to be arbitrary rational numbers.

The logarithmic derivative is a totally additive function.

Read more about this topic:  Arithmetic Derivative

Famous quotes containing the word definition:

    The very definition of the real becomes: that of which it is possible to give an equivalent reproduction.... The real is not only what can be reproduced, but that which is always already reproduced. The hyperreal.
    Jean Baudrillard (b. 1929)

    Was man made stupid to see his own stupidity?
    Is God by definition indifferent, beyond us all?
    Is the eternal truth man’s fighting soul
    Wherein the Beast ravens in its own avidity?
    Richard Eberhart (b. 1904)

    Scientific method is the way to truth, but it affords, even in
    principle, no unique definition of truth. Any so-called pragmatic
    definition of truth is doomed to failure equally.
    Willard Van Orman Quine (b. 1908)