Anti-gliadin Antibodies - Uses of Antigliadin Antibodies in Testing

Uses of Antigliadin Antibodies in Testing

Antigliadin antibodies can be generated in mice or rabbits by immunizing whole purified gliadins, proteolytic fragments of gliadin, or synthetic peptides that represent epitopes of gliadin. After developing an immune response, B-cells from mice can be fused with immortalizing cells to form a hybridoma that produces monoclonal antibodies (Mab or MoAb). Mab can be expressed in culture or via ascites fluid production to produce large amounts of a single antibody isoform.

Mab can be used to detect levels of gluten in food products. Some of these antibodies can recognize only wheat prolamins or very closely related grass seeds; others can detect antigens over broad taxa. The G12 antibody is the newest example, developed by the Spanish company Biomedal. It recognizes the toxic fraction of wheat, barley, rye and also of oat. The R5 sandwich assay is another such assay. This assay can recognize wheat, barley and rye, which makes it ideal for evaluating the presence of contaminants in gluten-free foods that do not contain oat. This antibody is a recommended testing protocol in a proposed revision of the Codex Alimentarius.

The new standards came about in part because of new sensitive and specific testing procedures. These procedures are capable of detecting wheat or multiple cereals at concentrations as low as 1 part per million (PPM or 1 mg/kg). A new barley-sensitive ELISA called the R5 sandwich assay does not detect gluten in any of 25 pure oat varieties, but it does detect barley, wheat and rye.

Read more about this topic:  Anti-gliadin Antibodies

Famous quotes containing the word testing:

    Bourbon’s the only drink. You can take all that champagne stuff and pour it down the English Channel. Well, why wait 80 years before you can drink the stuff? Great vineyards, huge barrels aging forever, poor little old monks running around testing it, just so some woman in Tulsa, Oklahoma can say it tickles her nose.
    John Michael Hayes (b.1919)